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Abstract. The phase diagram of the d = 3 Hubbard model is calculated as a function of temperature and
electron density 〈ni〉, in the full range of densities between 0 and 2 electrons per site, using renormalization-
group theory. An antiferromagnetic phase occurs at lower temperatures, at and near the half-filling density
of 〈ni〉 = 1. The antiferromagnetic phase is unstable to hole or electron doping of at most 15%, yielding
to two distinct“τ” phases: for large coupling U/t, one such phase occurs between 30–35% hole or electron
doping, and for small to intermediate coupling U/t another such phase occurs between 10–18% doping.
Both τ phases are distinguished by non-zero hole or electron hopping expectation values at all length scales.
Under further doping, the τ phases yield to hole- or electron-rich disordered phases. We have calculated
the specific heat over the entire phase diagram. The low-temperature specific heat of the weak-coupling τ
phase shows an exponential decay, indicating a gap in the excitation spectrum, and a cusp singularity at
the phase boundary. The strong-coupling τ phase, on the other hand, has a critical exponent α ≈ −1, and
an additional peak in the specific heat above the transition temperature possibly indicating pair formation.
In the limit of large Coulomb repulsion, the phase diagram of the tJ model is recovered.

PACS. 74.72.-h Cuprate superconductors (high-Tc and insulating parent compounds) – 71.10.Fd Lattice
fermion models (Hubbard model, etc.) – 05.30.Fk Fermion systems and electron gas – 74.25.Dw Super-
conductivity phase diagrams

1 Introduction

The Hubbard model [1] is the simplest realistic (in that
it retains particulate dynamics) model of electronic con-
duction systems. This model should constitute a fair de-
scription for many real solid-state physics systems and a
starting-point description for those systems with added
complexities such as quenched randomness, frustration,
and/or spatial anisotropy. The first query that comes to
mind, in the study of either experimental or model sys-
tems, is on the phase diagram, as a function of physical
parameters such as temperature and density. Lacking ex-
act solutions for d > 1, one must rely on approximations.
Hartree-Fock mean-field theory has yielded T = 0 phase
diagrams for d = 2 [2] and d = 3 [3], and there have
been many efforts to go beyond mean-field analysis both
perturbatively and non-perturbatively [4]. Yet despite the
wide variety of approximate theoretical treatments of the
Hubbard model in d = 2 and 3, as well as numerical work
on finite systems through exact diagonalization and quan-
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tum Monte Carlo [5], there is little certain information
about the phase diagram away from half-filling in these
cases, particularly for strong coupling.

There have been various applications of renormal-
ization group theory to lattice fermion models, both in
position- and momentum-space. Previous position-space
renormalization-group calculations have concentrated on
studying the Hubbard model in lower dimensions, at
zero temperature, or at half-filling: The zero-temperature
(ground-state) properties were successfully obtained in
d = 1, 2, 3 [6,7]. In d = 1 at half-filling, the thermo-
dynamic properties were accurately calculated for finite
temperatures [8]. In cases where comparison is possible
due to the availability of exact results in d = 1, the
renormalization-group results have proven to be very ac-
curate, coming to within about 1% of the exact results [7,
8]. In d = 2 at half filling, it was found that no phase
transition occurs as a function of temperature [9,10]. This
result was later extended to other fillings in d = 2 [11]
and confirmed by quantum Monte Carlo calculations [12].
In d = 3 at half filling, an antiferromagnetic phase transi-
tion as a function of temperature was obtained [10]. One
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calculation done in d = 3 at finite temperature and arbi-
trary chemical potential [11] did not obtain the “τ” phase
reported below and in reference [13].

The physics of the Hubbard model in the limit of
large Coulomb repulsion is believed to be described by the
tJ model [14,15]. Application of renormalization-group
theory to the entire density range of the tJ model at
finite temperatures in d = 3 has yielded [16,17], be-
tween 30–40% vacancies from 〈ni〉 = 1, a novel (dubbed
“τ”) phase in which the electron hopping strength in the
Hamiltonian renormalizes to infinity under repeated scale
changes, while the system remains partially filled. The cal-
culated topology of the phase diagram, including near the
τ phase a first-order phase transition that is very narrow
(less than 2% jump in the electron density) and an antifer-
romagnetic phase that is unstable to at most 10% vacan-
cies from 〈ni〉 = 1, is indeed reminiscent of experimental
phase diagram determinations with lanthanide oxides [18].

While the studies above [6–11,16,17] have used
position-space renormalization-group approaches, there
has recently been a revival of interest in Wilson perturba-
tive renormalization-group methods applied to correlated
fermion problems. These methods have long been known
to be successful for one-dimensional systems [19,20] and,
in the last few years, for the d = 2 Hubbard model,
they have yielded antiferromagnetic instabilities near
half-filling and superconducting instabilities at smaller
densities [21–27]. Because of the perturbative nature
of these treatments, their predictions are strictly valid
only in the case of weak coupling. The position-space
renormalization-group method presented in this paper ap-
pears to work over the entire range of coupling strengths,
as seen below, and yields definite phase diagrams and ther-
modynamic functions.

In fact, our approach makes an interesting prediction
for the evolution of the Hubbard phase diagram as cou-
pling is increased. We find two distinct τ phases, one oc-
curring at small to intermediate coupling and the other,
inclusive of the tJ model τ phase, occurring at strong cou-
pling. From an analysis of their specific heat behaviors, we
find that the two τ phases respectively have characteris-
tic properties of a weakly-coupled and a strongly-coupled
superconducting phase. Since high-Tc materials share as-
pects of both limits, and are thought to lie in some inter-
mediate coupling range [28], our prediction for the Hub-
bard phase diagram may be directly relevant to the physics
of high-Tc superconductors.

2 The Hubbard model

The Hubbard model is defined by the Hamiltonian

−βH = − t
∑

〈ij〉,σ

(
c†iσcjσ + c†jσciσ

)
(1)

− U0

∑

i

ni↑ni↓ + µ0

∑

i

ni,

with β = 1/kT , describing electron conduction on a
d-dimensional hypercubic lattice. Here c†iσ and ciσ respec-

tively are creation and annihilation operators, obeying an-
ticommutation rules, for an electron with spin σ = ↑ or ↓
at the site i of the lattice; niσ = c†iσciσ and ni = ni↑ +ni↓
are electron number operators. Each lattice site can ac-
commodate up to two electrons with opposite spins. The
index 〈ij〉 denotes summation over all nearest-neighbor
pairs of sites. The three terms of this Hamiltonian respec-
tively incorporate kinetic energy (parameterized by the
electron hopping strength t), on-site Coulomb repulsion
(with coefficient U0 > 0), and chemical potential µ0. It
is convenient for our purposes to rearrange equation (1)
into an equivalent Hamiltonian by grouping into a single
lattice summation:

−βH =
∑

〈ij〉

{
− t

∑

σ

(
c†iσcjσ + c†jσciσ

)

− U (ni↑ni↓ + nj↑nj↓) + µ (ni + nj)

}

≡
∑

〈ij〉
{−βH(i, j)} . (2)

The interaction constants are trivially related by
U = U0/2d, µ = µ0/2d, and we have hereby exhibited the
individual-pair Hamiltonian −βH(i, j).

3 Renormalization-group transformation

3.1 Exact formulation in d = 1

For d = 1 (with lattice sites i = 1, 2, 3, . . .), the Hubbard
Hamiltonian in equation (2) takes the form

−βH =
∑

i

{−βH(i, i+ 1)} , (3)

for which an exact renormalization-group transformation
can be formulated. In terms of matrix elements, this exact
transformation is [16]

〈
u1u3u5 · · ·

∣∣∣e−β′H′
∣∣∣ v1v3v5 · · ·

〉
=

∑

w2,w4,w6,...

〈
u1w2u3w4u5w6 · · ·

∣∣e−βH
∣∣ v1w2v3w4v5w6 · · ·

〉
,

(4)

where ui, vi, and wi are state variables for lattice site i.
These variables range over the set {◦, ↑, ↓, �}, by which
we represent the no electron, a single electron with spin
up, a single electron with spin down, and doubly occu-
pied states. Here and below, the quantities referring to the
renormalized (rescaled) system are denoted with a prime.
The transformation in equation (4) eliminates half of the
degrees of freedom in the system, while exactly preserving
the partition function (Z ′ = Z). However, the transfor-
mation cannot be readily implemented, due to the non-
commutativity of the operators in the Hamiltonian.
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3.2 Approximation in d = 1

The renormalization-group transformation formulated in
Section 3.1 is implemented approximately, as follows:

Trevene
−βH =Trevene

∑
i{−βH(i,i+1)}

=Trevene
∑ even

i {−βH(i−1,i)−βH(i,i+1)}

�
even∏

i

Trie
{−βH(i−1,i)−βH(i,i+1)}

=
even∏

i

e−β′H′(i−1,i+1)

�e
∑ even

i {−β′H′(i−1,i+1)} = e−β′H′
. (5)

In the two approximate steps, marked by � in equa-
tion (5), we ignore the non-commutation of operators sep-
arated beyond three consecutive sites of the unrenormal-
ized system. Since each of these two steps involves the
same approximation but in opposite directions, some mu-
tual compensation can be expected. The success of this
approximation at predicting finite-temperature behavior
has been verified in earlier studies of quantum spin sys-
tems [29,30].

The algebraic content of the renormalization-group
mapping can be extracted from equation (5) as

e−β′H′(i,k) = Trje
−βH(i,j)−βH(j,k), (6)

where i, j, k are three consecutive sites of the unrenormal-
ized system. The operators −β′H ′(i, k) and −βH(i, j) −
βH(j, k) act on the space of two-site and three-site states
respectively, so that, in terms of matrix elements,
〈
uivk|e−β′H′(i,k)|ūiv̄k

〉
=

∑

wj

〈
uiwj vk

∣∣∣e−βH(i,j)−βH(j,k)
∣∣∣ ūiwj v̄k

〉
, (7)

where ui, wj , vk, ūi, v̄k are single-site state variables. Equa-
tion (7) indicates the contraction of a 64 × 64 matrix on
the right into a 16× 16 matrix on the left. This is greatly
simplified by the use of two- and three-site basis states
that block-diagonalize respectively the left and right sides
of equation (7). These basis states are the eigenstates of
total particle number, total spin magnitude, total spin z-
component, and parity. We denote the set of 16 two-site
eigenstates by {|φp〉} and the set of 64 three-site eigen-
states by {|ψq〉}, and list them in Tables 1 and 2. Equa-
tion (7) is rewritten as
〈
φp

∣∣∣e−β′H′(i,k)
∣∣∣φp̄

〉
=

∑

u,v,ū,
v̄,w

∑

q,q̄

〈φp |uivk〉 〈uiwjvk|ψq〉

×
〈
ψq

∣∣∣e−βH(i,j)−βH(j,k)
∣∣∣ψq̄

〉
· 〈ψq̄|ūiwj v̄k〉〈ūiv̄k|φp̄〉 .

(8)

In the above equation, with the eigenstates shown in Ta-
bles 1 and 2, the largest block in

〈
φp|e−β′H′(i,k)|φp̄

〉
is

Table 1. The two-site basis states used in the derivation of
the recursion relations, in equation (8). In these basis states,

e−β′H′(i,k) is diagonal, with the exception of a 2 × 2 block
involving |φ6〉 and |φ8〉. The corresponding particle number
(n), parity (p), total spin (s), and total spin z-component (ms)
quantum numbers are also given. The states |φ3〉, |φ5〉, |φ11〉,
|φ13〉, |φ15〉 are obtained by spin reversal from |φ2〉, |φ4〉, |φ9〉,
|φ12〉, |φ14〉, respectively.

n p s ms Two-site basis states

0 + 0 0 |φ1〉 = | ◦ ◦〉
1 + 1/2 1/2 |φ2〉 = 1√

2
{| ↑ ◦〉 + |◦ ↑〉}

1 − 1/2 1/2 |φ4〉 = 1√
2
{| ↑ ◦〉 − |◦ ↑〉}

2 + 0 0 |φ6〉 = 1√
2
{| � ◦〉 + |◦ �〉}

2 − 0 0 |φ7〉 = 1√
2
{| � ◦〉 − |◦ �〉},

|φ8〉 = 1√
2
{| ↑↓〉 − | ↓↑〉}

2 + 1 1 |φ9〉 = | ↑↑〉
2 + 1 0 |φ10〉 = 1√

2
{| ↑↓〉 + | ↓↑〉}

3 + 1/2 1/2 |φ12〉 = 1√
2
{| �↑〉 + | ↑�〉}

3 − 1/2 1/2 |φ14〉 = 1√
2
{| �↑〉 − | ↑�〉}

4 + 0 0 |φ16〉 = | ��〉

2 × 2 and the largest block in
〈
ψq|e−βH(i,j)−βH(j,k)|ψq̄

〉

is 4 × 4. (In previous work [13], some matrix ele-
ments in these blocks were incorrectly derived). Equa-
tion (8) yields eleven independent elements for the matrix〈
φp|e−β′H′(i,k)|φp̄

〉
of the renormalized system. These we

label γp, as shown in Appendix A. The values of the γp in
terms of the matrix elements of the unrenormalized sys-
tem, dictated by the right-hand side of equation (8), are
also given in Appendix A.

3.3 Hamiltonian closed form under
the renormalization-group transformation

Since eleven interaction strengths can be independently
fixed by the eleven γp, the Hamiltonian −β′H ′ which is
embodied in Appendix A has a more general form than
that of the Hubbard Hamiltonian in equation (2). This
generalized form of the pair Hamiltonian is

−βH(i, j)=−
∑

σ

[t0hi−σhj−σ

+t1(hi−σnj −σ + ni−σhj −σ)

+t2 ni−σnj −σ]
(
c†iσcjσ + c†jσciσ

)

− tx

(
c†i↑cj↑c

†
i↓cj↓ + c†j↑ci↑c

†
j↓ci↓

)

− U (ni↑ni↓ + nj↑nj↓) + µ (ni + nj) + J �Si · �Sj

+ V2ninj + V3 (ni↑ni↓nj + ninj↑nj↓)
+ V4ni↑ni↓nj↑nj↓ + G , (9)
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Table 2. The three-site basis states used in the derivation of the recursion relations, in equation (8). In these basis states,
e−βH(i,j)−βH(j,k) is block-diagonal, with the largest blocks being 4 × 4 (see Tab. 4). The corresponding particle number (n),
parity (p), total spin (s), and total spin z-component (ms) quantum numbers are also given. The states |ψ4−5〉, |ψ7〉, |ψ18−19〉,
|ψ22〉, |ψ27−30〉, |ψ35−38〉, |ψ41−42〉, |ψ53−54〉, |ψ57〉, |ψ60−61〉, |ψ63〉 are obtained by spin reversal from |ψ2−3〉, |ψ6〉, |ψ14−15〉,
|ψ20〉, |ψ23−26〉, |ψ31−34〉, |ψ39−40〉, |ψ49−50〉, |ψ55〉, |ψ58−59〉, |ψ62〉, respectively.

n p s ms Three-site basis states

0 + 0 0 |ψ1〉 = | ◦ ◦ ◦〉
1 + 1/2 1/2 |ψ2〉 = |◦ ↑ ◦〉, |ψ3〉 = 1√

2
{| ↑ ◦ ◦〉 + | ◦ ◦ ↑〉}

1 − 1/2 1/2 |ψ6〉 = 1√
2
{| ↑ ◦ ◦〉 − | ◦ ◦ ↑〉}

2 + 0 0 |ψ8〉 = 1
2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 − |◦ ↑↓〉 + |◦ ↓↑〉},

|ψ9〉 = |◦ � ◦〉, |ψ10〉 = 1√
2
{| � ◦ ◦〉 + | ◦ ◦ �〉}

2 − 0 0 |ψ11〉 = 1
2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 + |◦ ↑↓〉 − |◦ ↓↑〉},

|ψ12〉 = 1√
2
{| ↑ ◦ ↓〉 − | ↓ ◦ ↑〉},

|ψ13〉 = 1√
2
{| � ◦ ◦〉 − | ◦ ◦ �〉}

2 + 1 1 |ψ14〉 = | ↑ ◦ ↑〉, |ψ15〉 = 1√
2
{| ↑↑ ◦〉 + |◦ ↑↑〉}

2 + 1 0 |ψ16〉 = 1
2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 + |◦ ↑↓〉 + |◦ ↓↑〉},

|ψ17〉 = 1√
2
{| ↑ ◦ ↓〉 + | ↓ ◦ ↑〉}

2 − 1 1 |ψ20〉 = 1√
2
{| ↑↑ ◦〉 − |◦ ↑↑〉}

2 − 1 0 |ψ21〉 = 1
2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 − |◦ ↑↓〉 − |◦ ↓↑〉}

3 + 1/2 1/2 |ψ23〉 = 1√
6
{2| ↑↓↑〉 − | ↑↑↓〉 − | ↓↑↑〉},

|ψ24〉 = 1√
2
{| ↑� ◦〉 + |◦ �↑〉},

|ψ25〉 = 1√
2
{| ↑ ◦ �〉 + | � ◦ ↑〉},

|ψ26〉 = 1√
2
{| �↑ ◦〉 + |◦ ↑�〉}

3 − 1/2 1/2 |ψ31〉 = 1√
2
{| ↑↑↓〉 − | ↓↑↑〉},

|ψ32〉 = 1√
2
{| ↑� ◦〉 − |◦ �↑〉},

|ψ33〉 = 1√
2
{| ↑ ◦ �〉 − | � ◦ ↑〉},

|ψ34〉 = 1√
2
{| �↑ ◦〉 − |◦ ↑�〉}

3 + 3/2 3/2 |ψ39〉 = | ↑↑↑〉
3 + 3/2 1/2 |ψ40〉 = 1√

3
{| ↑↓↑〉 + | ↑↑↓〉 + | ↓↑↑〉}

4 + 0 0 |ψ43〉 = | � ◦ �〉, |ψ44〉 = 1√
2
{| �� ◦〉 + |◦ ��〉},

|ψ45〉 = 1
2
{| ↑↓�〉 − | ↓↑�〉 − | �↑↓〉 + | �↓↑〉}

4 − 0 0 |ψ46〉 = 1
2
{| ↓↑�〉 − | ↑↓�〉 − | �↑↓〉 + | �↓↑〉},

|ψ47〉 = 1√
2
{| ↑�↓〉 − | ↓�↑〉},

|ψ48〉 = 1√
2
{| �� ◦〉 − |◦ ��〉}

4 + 1 1 |ψ49〉 = | ↑�↑〉, |ψ50〉 = 1√
2
{| ↑↑�〉 + | �↑↑〉}

4 + 1 0 |ψ51〉 = 1
2
{| ↑↓�〉 + | ↓↑�〉 + | �↑↓〉 + | �↓↑〉},

|ψ52〉 = 1√
2
{| ↑�↓〉 + | ↓�↑〉}

4 − 1 1 |ψ55〉 = 1√
2
{| ↑↑�〉 − | �↑↑〉}

4 − 1 0 |ψ56〉 = 1
2
{| ↑↓�〉 + | ↓↑�〉 − | �↑↓〉 − | �↓↑〉}

5 + 1/2 1/2 |ψ58〉 = | �↑�〉, |ψ59〉 = 1√
2
{| ↑��〉 + | ��↑〉}

5 − 1/2 1/2 |ψ62〉 = 1√
2
{| ��↑〉 − | ↑��〉}

6 + 0 0 |ψ64〉 = | ���〉

where hiσ ≡ 1 − niσ is the hole (vacancy) operator
and �Si = 1

2

∑
σ,σ̄ c

†
iσ�sσσ̄ciσ̄, with �sσσ̄ the vector of Pauli

spin matrices, is the spin operator at site i. In gen-
eral, the Hubbard Hamiltonian, after one renormalization-
group transformation, maps onto this generalized Hamil-
tonian, which has a form that stays closed under further
renormalization-group transformations.

The kinetic energy part of the Hamiltonian in equa-
tion (9) distinguishes the four types of nearest-neighbor
hopping events: i) vacancy hopping (the t0 term): a va-
cancy (hole) hopping against a background of single-
electron occupancy (half-filling); ii) pair breaking or pair
making (the t1 term): doubly occupied and completely un-
occupied nearest-neighbor sites reverting to half-filling, or
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the reverse process; iii) pair hopping (the t2 term): a pair
hopping against a background of half-filling; iv) vacancy -
pair interchange (the tx term): doubly occupied and com-
pletely unoccupied nearest-neighbor sites exchanging po-
sitions.

The generalized Hamiltonian of equation (9) reduces
to the Hubbard Hamiltonian of equation (2) for t0 = t1 =
t2 = t and tx = J = V2 = V3 = V4 = G = 0. The
renormalization-group flows occur in the 10-dimensional
interaction space of the generalized Hamiltonian; the
3-dimensional interaction space of the Hubbard Hamilto-
nian contains the initial conditions of the renormalization-
group flows.

The matrix elements of the renormalized pair Hamil-
tonian −β′H ′(i, k) are given in Table 3 in terms of the
renormalized interaction constants. Table 3 allows us to
solve for the renormalized interaction constants in terms
of the γp given in Appendix A:

t′0 =
1
2

ln
γ4

γ2
, t′1 = u

γ0

γ8 − γ6
,

t′2 =
1
2

ln
γ12

γ14
, t′x =

1
2

(u− v + ln γ7) ,

U ′ =
1
2

(
u− v + ln

γ2
2γ

2
4

γ2
1γ7

)
, µ′ =

1
2

ln
γ2γ4

γ2
1

,

J ′ = −u− v + ln γ9, V ′
2 =

1
4

ln
γ4
1γ

3
9

γ4
2γ

4
4

+
1
4
(u+ v),

V ′
3 =

1
2

ln
γ3
2γ

3
4γ12γ14

γ2
1γ7γ3

9

− v, V ′
4 = ln

γ1γ7γ
3
9γ16

γ2
2γ

2
4γ

2
12γ

2
14

+ 2v,

G′ = ln γ1, (10)

where

v =
1
2

ln
(
γ6γ8 − γ2

0

)
,

u =
γ8 − γ6√

(γ8 − γ6)
2 + 4γ2

0

cosh−1

(
γ8 + γ6

2ev

)
.

This completes the determination of our renormalization-
group transformation, whose flows in the ten-dimensional
interaction space (t0, t1, t2, tx, U, µ, J, V2, V3, V4) are to be
analyzed. (G is an additive constant not influencing the
flows of the 10 other interaction constants. However, for
expectation value calculations, its derivatives must be in-
cluded in Eq. (13)).

3.4 d = 1 renormalization-group transformation

The transformation described above is the removal (deci-
mation) of every other site in a linear array. This decima-
tion produces the mapping of a Hamiltonian with interac-
tion constants K = (t0, t1, t2, tx, U, µ, J, V2, V3, V4, G) onto
another Hamiltonian with interaction constants

K′ = R(K). (11)

Table 3. Block-diagonal matrix of the renormalized two-site
Hamiltonian −β′H ′(i, k). The Hamiltonian being invariant un-
der spin-reversal, the spin-flipped matrix elements are not
shown.

−β′H ′(i, k) φ1 φ2 φ4 φ7 φ9 φ10

φ1 G′

φ2 −t′0 +
µ′ +G′ 0

φ4 t′0 +
µ′ +G′

φ7 t′x − U ′ +
2µ′ +G′

φ9

0

2µ′ +
1
4
J ′ +

V ′
2 +G′

φ10

2µ′ +
1
4
J ′ +

V ′
2 +G′

−β′H ′(i, k) φ6 φ8

φ6 −t′x − U ′ + 2µ′ +G′ 2t′1
φ8 2t′1 2µ′ − 3

4
J ′ + V ′

2 +G′

−β′H ′(i, k) φ12 φ14 φ16

φ12 t′2 − U ′ + 3µ′

+2V ′
2+V ′

3+G′

φ14 −t′2 −U ′ +3µ′

+2V ′
2+V ′

3+G′ 0

φ16

0
−2U ′ + 4µ′ + 4V ′

2

+4V ′
3 + V ′

4 +G′

The function R is calculated as follows:
(1) The matrix elements of −βH(i, j) − βH(j, k) are

determined in the three-site basis {ψq} given in Table 2.
In this basis, this matrix is block-diagonal as shown in
Table 4, with the largest block being 4 × 4.

(2) The above block-diagonal matrix is exponentiated,
yielding the matrix elements

〈
ψq|e−βH(i,j)−βH(j,k)|ψq̄

〉

which enter on the right-hand side of equation (8). This
in turn yields the eleven γp (as given in Appendix A).

(3) Using equations (10), the interaction constants
of the renormalized Hamiltonian −β′H ′(i, k), namely
(t′0, t

′
1, t

′
2, t

′
x,U ′,µ′, J ′,V ′

2 ,V ′
3 , V ′

4 ,G′) are found.
The initial conditions, for the iterated

renormalization-group transformations that constitute the
renormalization-group flow, are the interaction constants
of the Hubbard Hamiltonian, K0 = (t0 = t, t1 = t, t2 =
t, tx = 0, U, µ, J = 0, V2 = 0, V3 = 0, V4 = 0, G = 0).

3.5 d > 1 renormalization-group transformation

The Migdal-Kadanoff approximation procedure [31,32]
(which has been remarkably effective in problems as di-
verse as lower-critical dimensions for different types of
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Table 4. Diagonal matrix blocks of the unrenormalized three-
site Hamiltonian −βH(i, j)−βH(j, k). The Hamiltonian being
invariant under spin-reversal, the spin-flipped matrix elements
are not shown. The additive constant contribution 2G, occur-
ring at the diagonal terms, is also not shown.

ψ1

ψ1 0

ψ2 ψ3

ψ2 2µ −√
2t0

ψ3 −√
2t0 µ

ψ6

ψ6 µ

ψ9 ψ10 ψ11 ψ12

ψ9 −2U + 4µ −√
2tx 2t1 0

ψ10 −√
2tx −U + 2µ

√
2t1 0

ψ11 2t1
√

2t1 3µ− 3
4
J + V2 −√

2t0

ψ12 0 0 −√
2t0 2µ

ψ8 ψ13

ψ8 3µ− 3
4
J + V2

√
2t1

ψ13

√
2t1 −U + 2µ

ψ14 ψ15

ψ14 2µ −√
2t0

ψ15 −√
2t0 3µ+ 1

4
J + V2

ψ16 ψ17

ψ16 3µ+ 1
4
J + V2 −√

2t0

ψ17 −√
2t0 2µ

ψ20

ψ20
3µ+

1
4
J+V2

ψ21

ψ21
3µ+

1
4
J+V2

ψ24 ψ25 ψ26 ψ31

ψ24
−2U + 5µ+

2V2 + V3
−tx t2 t1

ψ25 −tx −U + 3µ −t0 t1

ψ26 t2 −t0 −U + 4µ+
2V2 + V3

0

ψ31 t1 t1 0 4µ+ 2V2

ψ23 ψ32 ψ33 ψ34

ψ23 4µ− J + 2V2 −√
3t1 −√

3t1 0

ψ32 −√
3t1 −2U + 5µ+

2V2 + V3

−tx t2

ψ33 −√
3t1 −tx −U + 3µ t0

ψ34

0 t2 t0 −U +4µ+
2V2 + V3

ψ39

ψ39 4µ+ 1
2
J + 2V2

ψ40

ψ40 4µ+ 1
2
J + 2V2

phase transitions; first- and second-order phase transitions
in q-state Potts models; algebraic order in the d = 2
XY model; random-field, random-bond, spin-glass sys-
tems; quenched-disorder-induced criticality; etc.) is used
to construct the renormalization-group transformation for
d > 1. In the d-dimensional hypercubic lattice, a subset
of the nearest-neighbor interactions are ignored, so that
a hypercubic lattice (still d-dimensional) is left behind,
in which each lattice point is connected by two consecu-
tive nearest-neighbor segments of the original lattice. The
decimation described above can then be applied to the

Table 4. Continued.

ψ43 ψ44 ψ46 ψ47

ψ43 −2U + 4µ −√
2tx −2t1 0

ψ44 −√
2tx

−3U + 6µ+
4V2 + 4V3 +

V4

−√
2t1 0

ψ46 −2t1 −
√

2t1
−U + 5µ−
3
4
J+3V2+V3 −√

2t2

ψ47 0 0 −√
2t2

−2U +
6µ+

4V2 + 2V3

ψ45 ψ48

ψ45 −U + 5µ− 3
4
J + 3V2 + V3 −√

2t1

ψ48 −√
2t1 −3U + 6µ+ 4V2 + 4V3 + V4

ψ49 ψ50

ψ49 −2U + 6µ+ 4V2 + 2V3

√
2t2

ψ50

√
2t2 −U + 5µ+ 1

4
J + 3V2 + V3

ψ51 ψ52

ψ51 −U + 5µ+ 1
4
J + 3V2 + V3

√
2t2

ψ52

√
2t2 −2U + 6µ+ 4V2 + 2V3

ψ55

ψ55
−U + 5µ+

1
4
J + 3V2 + V3

ψ56

ψ56
−U + 5µ+

1
4
J + 3V2 + V3

ψ58 ψ59

ψ58 −2U + 6µ+ 4V2 + 2V3

√
2t2

ψ59

√
2t2 −3U + 7µ+ 6V2 + 5V3 + V4

ψ62

ψ62
−3U + 7µ+

6V2 + 5V3 + V4

ψ64

ψ64
−4U + 8µ+

8V2 + 8V3 + 2V4

site connecting these two segments of the original lattice,
yielding the renormalized nearest-neighbor couplings be-
tween the lattice points of the new hypercubic lattice. To
compensate for the nearest-neighbor interactions that are
ignored, the couplings are multiplied by a factor of bd−1

after decimation, b = 2 being the length rescaling factor.
Thus, the renormalization-group transformation of equa-
tion (11) in the previous section generalizes, for d > 1,
to

K′ = bd−1R(K). (12)

The robust effectiveness of the Migdal-Kadanoff approxi-
mation is due to the fact that it is physically realizable
on hierarchical lattices [33–35], where the connectivity
of the Migdal-Kadanoff procedure is exactly reproduced
and solved. These lattices (or equivalently the Migdal-
Kadanoff procedure) provide solvable models, with which
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complex problems have been studied and understood. For
example, frustrated [36], spin-glass [37], random-bond [38]
and random-field [39], Schrödinger equation [40], lattice-
vibration [41], dynamic scaling [42], aperiodic magnet [43],
complex phase diagram [44], and directed-path [45] sys-
tems, etc., have been solved on hierarchical lattices. Thus,
the current work can also be considered a hierarchical lat-
tice solution.

3.6 Supporting results

New global phase diagrams obtained by approximate
renormalization-group transformations are supported by
the correct rendition of all of the special cases of the sys-
tem solved. The Hamiltonian in equation (9), which is
the system presently solved by approximate recursion re-
lations, reduces in various limits to the Ising, quantum
XY, and quantum Heisenberg spin systems. Our recur-
sion relations correctly yield the lower critical-dimensions
dl of the Ising (dl = 1), quantum XY (dl = 2), and
quantum Heisenberg (dl = 2) spin systems. For the
quantum XY spin system in d = 2, this approximation
yields the algebraically ordered Kosterlitz-Thouless low-
temperature phase [29,30]. For the quantum Heisenberg
spin system in d = 3, our recursion relations yield low-
temperature antiferromagnetically (for J < 0) and ferro-
magnetically (for J > 0) ordered phases, each separated
by a second-order transition from the high-temperature
disordered phase. The antiferromagnetic transition tem-
perature is thus found to be 1.22 times [16] the ferro-
magnetic transition temperature, a purely quantum me-
chanical effect, and to be compared with the value of 1.13
from series expansion [46,47]. Furthermore, as purely off-
diagonal quantum effects, the hopping-induced antiferro-
magnetism of the d = 3 Hubbard model is recovered and
the scaling of the antiferromagnetic transition tempera-
ture is obtained with an excellent quantitative agreement,
as discussed in Section 5 at equation (16) and shown in
Figure 3. In fact, the scaling of the antiferromagnetic tran-
sition at strong-coupling (Fig. 3), as well as the results
quoted above, and the disappearance of the transition at
zero coupling (Fig. 4), indicate the validity of our approx-
imation across the entire strong-to-weak coupling range.
Finally, the Blume-Emery-Griffiths model is contained in
the Hamiltonian of equation (9) and its global phase di-
agram [48] is obtained from our recursion relations. All
of these results strongly support the validity of the global
calculation here.

4 Renormalization-group analysis: global
phase diagram and operator expectation
values

From the recursion equations determined in the preced-
ing section, flows are generated for initial values of t, U ,
and µ in the Hubbard Hamiltonian. The renormalization-
group transformation, which constitutes each step of the

flow, is effected numerically. Particular attention has to
be given to the multiplication of small amplitudes with
large exponentials, which can occur in the right-hand side
of equation (8) when interaction constants become large,
causing the computational difficulties encountered in pre-
vious work [13].

Each completely stable fixed point, namely sink of
the renormalization-group flows, corresponds to a ther-
modynamic phase, and the global phase diagram is found
by identifying the basin of attraction for every sink [48].
The expectation values for the operators occurring in the
Hamiltonian are obtained from the conjugate recursion
relations [49]

nβ = b−dn′
αTαβ , (13)

with summation over the repeated index α implicit. The
recursion matrix is

Tαβ =
∂K ′

α

∂Kβ
, (14)

where Kα is an interaction strength, namely a compo-
nent in the interaction strength vector K defined before
equation (11); nα is the expectation value of the operator
that occurs in the Hamiltonian with coefficient Kα. Equa-
tion (13) is iterated along a trajectory until a phase sink
limit. The left eigenvector of Tαβ with eigenvalue bd gives
the expectation values at the phase sink, thereby complet-
ing the calculation of the expectation values of the initial
point of the trajectory.

The observed phase sinks in the calculations for the
d = 3 Hubbard model — the details of which are shown
in Table 5 — have a property in common: at the sink limit,
t1 renormalizes toward zero. In the limit t1 → 0, analytic
expressions are derived to first order in t1 for the matrix
elements

〈
ψq|e−βH(i,j)−βH(j,k)|ψq̄

〉
on the right-hand side

of equation (8). This yields, in the neighborhood of each
phase sink, analytic renormalization-group equations. The
analytic equations provide a useful check on the accuracy
of the numerical calculations, and lead to closed-form ex-
pressions for limiting values of interaction strengths or
ratios of limiting values of interaction strengths.

Flows that start at the boundaries between phases
have their own fixed points, distinguished from phase sinks
by having at least one unstable direction. After narrowing
down onto the boundary and from there following a flow to
the neighborhood of the unstable fixed point, a Newton-
Raphson procedure is used to exactly locate this unstable
fixed point. Analysis at these fixed points determines the
phase transition properties. The expectation values calcu-
lated, as described above, at the phase boundaries allow
us to redraw the phase diagram using expectation values
nα on the axes as well as t, U , and µ.

The Hamiltonian of equation (9) is covariant under
particle-hole symmetry (c†iσ → ciσ), which in Hamiltonian
space takes the form of a mapping K̄ = S(K). The func-
tion S is given by

t̄0 = −t2, t̄1 = −t1, t̄2 = −t0, t̄x = tx, J̄ = J,

Ū = U − 2V3 − V4, µ̄ = −µ+ U − 2V2 − 3V3 − V4,

V̄2 = V2 + 2V3 + V4, V̄3 = −V3 − V4, V̄4 = V4. (15)
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Fig. 1. d = 3 Hubbard model phase diagrams in temperature versus chemical potential. The hole-rich disordered (hD), near-
half-filled disordered (nHD), half-filled disordered (HD), electron-rich disordered (eD), antiferromagnetic (AF), τHb, and τtJ

phases are seen. The full curves are second-order phase boundaries, while the dotted curves are first-order boundaries. The
dashed curves are not phase transitions, but disorder lines between the near-half-filled disordered and the hole-rich or electron-
rich disordered phases. The progression (a) U0/t = 20 through (e) U0/t = 5 shows the changing phase diagram topology from
strong to intermediate coupling. The τtJ phase, which is prominent at strong coupling, disappears entirely for U0/t � 6, and
the τHb phase is prominent for intermediate couplings.

The subspace that is invariant under S corresponds to sys-
tems that are invariant under particle-hole exchange, and
therefore are at half-filling: 〈ni〉 = 1 = 〈hi〉. From equa-
tion (15), this subspace occurs at t0 = −t2, t1 = 0, 2µ =
U−2V2−V3, 2V3 = −V4. For the original Hubbard Hamil-
tonian, all points with µ0/U0 = 1/2 are mapped onto this
subspace after the first renormalization-group step.

The Hubbard phase diagrams are plotted in the next
section, for fixed U0/t, in terms of 1/t (a temperature
variable) versus µ0/U0 or 〈ni〉. Since our renormalization-
group transformation is also covariant under particle-hole
symmetry, the phase diagrams are duly symmetric about
µ0/U0 = 1/2 or 〈ni〉 = 1.
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Fig. 2. d = 3 Hubbard model phase diagrams in temperature versus electron density. The full curves are second-order phase
boundaries. The coexistence boundaries of first-order transitions are drawn with dotted curves, with the unmarked areas
inside corresponding to coexistence regions of the two phases at either side. The dashed curves are not phase transitions, but
disorder lines between the near-half-filled disordered and the hole-rich or electron-rich disordered phases. Noteworthy is the
narrowness of the first-order transitions, with jumps in the electron density of the order of a few percent (i.e., the width of the
coexistence region). The antiferromagnetic phase is unstable to about 8–15% hole (or electron) doping away from half-filling. In
the intermediate U0/t regime, the τHb phase appears for about 10–18% hole (or electron) doping. At larger U0/t, the τtJ phase
dominates, and exists between 30–35% hole (or electron) doping.

5 Global phase diagram for d = 3

For d = 3 and a range of couplings U0/t = 5 to 20, Fig-
ures 1 show Hubbard phase diagrams in terms of temper-
ature (1/t) versus chemical potential (µ0/U0). The cor-
responding phase diagrams in temperature (1/t) versus
electron density 〈ni〉 are in Figure 2. The values of the in-
teraction constants for each observed phase sink are listed

in Table 5. The expectation values for each phase sink,
also listed in Table 5, allow us to identify the phases as
follows:

Hole-rich disordered (hD) phase: the electron
density 〈ni〉 is zero at the sink and, concomitantly, the
electron densities 〈ni〉 calculated inside this phase are low.
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Near-half-filled disordered (nHD) phase: the
basin of attraction of nHD occurs at µ0/U0 
= 1/2. The
electron density 〈ni〉 is 1 at the sink and, concomitantly,
the electron densities 〈ni〉 calculated inside this phase are
closer to half-filling.

Half-filled disordered (HD) phase: the sink is for
the disordered phase at perfect half-filling, µ0/U0 = 1/2
and 〈ni〉 = 1.

Electron-rich disordered (eD) phase: the electron
density 〈ni〉 is 2 at the sink and, concomitantly, the elec-
tron densities 〈ni〉 calculated inside this phase are high.

Antiferromagnetic (AF) phase: the electron den-
sity 〈ni〉 is 1 at the sink and, concomitantly, the electron
densities 〈ni〉 calculated inside this phase are closer to
half-filling. The expectation value for the nearest-neighbor
spin-spin correlation is

〈
�Si · �Sj

〉
= 1

4 at the sink. Note
that the latter two spins are, on the original cubic lat-
tice, distant spins on the same sublattice; from this,
antiferromagnetism, 〈�Si · �Sj〉 < 0 when the spins are on
different sublattices of the original cubic lattice, is calcula-
tionally obtained throughout this phase. Since there is no
explicit antiferromagnetic coupling in the initial Hubbard
Hamiltonian, the antiferromagnetic phase is completely a
quantum mechanical effect resulting from the kinetic en-
ergy term. In fact, at half-filling, second-order perturba-
tion theory in t, valid for small t/U0, must yield an ef-
fective antiferromagnetic coupling proportional to t2/U0.
Thus, for small t/U0, t2/U0 should equal the same con-
stant at all antiferromagnetic phase transitions at half-
filling (Recall that all of our coupling constants are di-
mensionless, incorporating the inverse temperature factor
1/kT ). Equivalently, t/U0 should be linear in 1/t at all an-
tiferromagnetic phase transitions at half-filling, for small
t/U0 and therefore for small 1/t (low temperature):

1/t ∼ t/U0. (16)

This is indeed rendered by our calculation, as seen in Fig-
ure 3. For higher values of 1/t, equation (16) is not ap-
plicable, since second-order perturbation theory does not
hold, and indeed our calculated curve in Figure 3 devi-
ates from linearity. On the other hand, the approximation
in our recursion relation is even more justified, since the
commutation relations that are ignored involve terms of
order t2.

The antiferromagnetic transition temperature as a
function of coupling U0/t is also shown in Figure 4, to-
gether with calculated values from other approximation
schemes for the d = 3 Hubbard model. We see that our
results for intermediate coupling are comparable to those
of quantum Monte Carlo studies [50,51]. As expected, our
transition temperature vanishes in the limit U0/t → 0,
since there are no phase transitions for the non-interacting
system. Thus, our approximation qualitatively reproduces
the expected results.

A ferromagnetic phase is not seen in our calculation.
This phase could possibly exist at low temperatures and
be missed here because of our approximation. Similarly,
a superconducting phase at low density and low temper-
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erutarep
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Fig. 3. The data points are the calculated antiferromagnetic
transition temperatures at half-filling. The linear relation that
is expected for strong coupling at low temperatures (Sect. 5)
is obtained.
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Fig. 4. Comparison of the antiferromagnetic transition tem-
peratures at half-filling for the d = 3 Hubbard model calculated
from various approaches: the renormalization-group method of
the present paper (solid line); QMC [50] (diamonds); QMC [51]
(triangles); DMFT [52] (squares); RPA weak-coupling expan-
sion [53] (dot-dashed line); and two approximations for the
strong-coupling behavior — the high-temperature expansion
of the Heisenberg model, 1/t = 3.83t/U0 [51] (dotted line) and
Weiss mean-field theory, 1/t = 6t/U0 (dashed line).

ature, arising out of the Kohn-Luttinger mechanism [54],
is not seen.

τHb and τtJ phases: for large values of U0/t, the
novel phase found in the tJ model [16] (which we call
τtJ) also occurs in the Hubbard model. In addition, we
find a closely related phase (τHb), unique to the Hubbard
model, at smaller U0/t. The two phases are characterized
by very similar properties: the hopping strengths t0, t2,
and tx renormalize to ±∞, and the phase sinks have a
non-zero vacancy hopping expectation value

〈
∑

σ

hi−σhj−σ(c†iσcjσ + c†jσciσ)

〉
=

{
−2/3 (τtJ)

0.663972 (τHb)
,

(17)
for µ0/U0 < 1/2, and a non-zero pair hopping expectation
value

〈
∑

σ

ni−σnj−σ(c†iσcjσ + c†jσciσ)

〉
=

{
2/3 (τtJ)

−0.663972 (τHb)
,

(18)
for µ0/U0 > 1/2. In both cases, as expected for the oc-
currence of hopping, the electron densities at the sinks
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Table 5. Interaction constants and expectation values at the phase sink fixed points. For τHb and τtJ , the values for

µ0/U0
<
>

1
2

are given. The hopping expectation values 〈Tα〉 are: 〈T0〉 =
∑

σ〈hi−σhj−σ(c†iσcjσ + c†jσciσ)〉, 〈T1〉 =
∑

σ〈(ni −σhj −σ +

hi −σnj −σ)(c†iσcjσ + c†jσciσ)〉, 〈T2〉 =
∑

σ〈ni −σnj −σ(c†iσcjσ + c†jσciσ)〉, 〈Tx〉 = 〈c†i↑cj↑c†i↓cj↓ + c†j↑ci↑c
†
j↓ci↓〉.

Phase sink Interaction constants
Additional
properties

t0 t1 t2 tx U µ J V2 V3 V4

hole-rich 0 0 0 0 ∞ −∞ 0 0 0 0

disordered hD µ/U =const.

near-half-filled 2 ln 3 0 −2 ln 3 ∞ ∞ ∞ 0 −∞ ∞ -∞ U−2µ−2V2−V3=0

disordered nHD ≈ 0.24U ≈ 0.62U ≈ −0.47U ≈ 0.69U ≈ −1.38U 2V3+V4=0

half-filled 0 0 0 0 ∞ ∞ 0 0 0 0 U−2µ=0

disordered HD = 1
2 U

electron-rich 0 0 0 0 ∞ ∞ 0 0 0 0

disordered eD µ/U =const.

antiferro- −∞ 0 ∞ ∞ ∞ ∞ ∞ −∞ ∞ −∞ U−2µ−2V2−V3→0

magnetic AF ≈ −0.29U ≈ 0.29U ≈ 0.14U ≈ 0.57U ≈ 0.29U ≈ −0.071U V3/U → 0 V4/U → 0 2V3+V4→0

(µ0/U0 �= 1/2) t2−t0→0

antiferro- 0 0 0 0 ∞ ∞ ∞ −∞ ∞ −∞ U−2µ−2V2−V3=0

magnetic AF ≈ 1
2 U J/U → 0 ≈ − 1

4 J ≈ 1
2 J ≈ −J 2V3+V4=0

(µ0/U0 = 1/2) t2−t0=0

τHb −∞ 0 ∞ −∞ ∞ ∞ ∞ −∞ −∞ ∞ t0+µ+1
4 J+V2

(µ0/U0 < 1/2) ≈ − 1
4 U ≈ 1

2 U ≈ − 1
2 U ≈ 1

4 U ≈ 1
2 U ≈ − 1

8 U V3/U → 0 V4/U → 0 ≈−4.35

τHb −∞ 0 ∞ −∞ ∞ ∞ ∞ −∞ ∞ ∞ −t2+U−µ+1
4 J

(µ0/U0 > 1/2) ≈ − 1
2 U ≈ 1

4 U ≈ − 1
2 U ≈ U ≈ 1

2 U ≈ − 1
8 U V3/U → 0 V4/U → 0 −V2−V3≈−4.35

τtJ ∞ 0 −∞ ∞ ∞ −∞ −∞ −∞ −∞ −∞
(µ0/U0 < 1/2) ≈ 0.13U ≈ −1.46U ≈ 0.52U ≈ −0.022U ≈ −0.87U ≈ −0.50U ≈ −1.13U ≈ −0.21U

τtJ ∞ 0 −∞ ∞ ∞ ∞ −∞ −∞ ∞ −∞
(µ0/U0 > 1/2) ≈ 0.42U ≈ −0.038U ≈ 0.15U ≈ 1.62U ≈ −0.25U ≈ −0.86U ≈ 0.39U ≈ −0.060U

Phase sink Expectation values

〈T0〉 〈T1〉 〈T2〉 〈Tx〉 〈ni↑ni↓〉 〈ni〉 〈�Si · �Sj〉 〈ninj〉 〈ni↑ni↓nj〉 〈ni↑ni↓nj↑nj↓〉
hD 0 0 0 0 0 0 0 0 0 0

nHD 0 0 0 0 0 1 0 1 0 0

HD 0 0 0 0 0 1 0 1 0 0

eD 0 0 0 0 1 2 0 4 2 1

AF 0 0 0 0 0 1 1
4

1 0 0

τHb

⎧
⎨

⎩

0.663
972

0
0

⎧
⎨

⎩
0
−0.66
3972

0

⎧
⎨

⎩
0
0.331

986

⎧
⎪⎨

⎪⎩

0.668
014

1.331
986

0.0840
069

⎧
⎪⎨

⎪⎩

0.336
028

1.663
972

⎧
⎨

⎩
0
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have values different from 0 (empty), 1 (half filled), or
2 (doubly occupied): 〈ni〉 = 2/3, 4/3 and 〈ninj〉 = 1/3,
5/3 for the τtJ phase, and 〈ni〉 = 0.668014, 1.331986 and
〈ninj〉 = 0.336028, 1.663972 for the τHb phase. (At the
sinks of non-τ phases, the electron density is, on the other
hand, 0, 1, or 2.) There are also small spin correlations
in the phase sink limits, 〈�Si · �Sj〉 = −1/4 for τtJ , and

〈�Si · �Sj〉 = 0.0840069 for τHb, which yield, throughout
these phases, small antiferromagnetic correlations in the
original system.

The boundaries in Figure 1 are controlled by fourteen
unstable fixed points, given in Table 6. For smaller values
of U0/t, the topology of the phase diagram is that of Fig-
ure 1e, where the AF/HD, AF/nHD, AF/τHb, and hD/τHb
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Table 6. Unstable fixed points. The fixed points of the µ0/U0 ≤ 1/2 half space are given here.

Basin Type Interaction constants
Additional
properties

Relevant
eigen-
value
expo-
nents
(y)

t0 t1 t2 tx U µ J V2 V3 V4

F ∗
1 portion of 1st 2 ln 3 0 −2 ln 3 ∞ ∞ −∞ 0 ∞ −∞ −∞ 2µ+V2≈−0.396 3

hD/nHD order U−2µ−2V2−V3→0

boundary

F ∗
2 AF/hD 1st −∞ 0 ∞ ∞ ∞ −∞ ∞ ∞ −∞ ∞ U−2µ−2V2−V3→0 3

boundary order 8µ+J+4V2≈−0.658

C∗
1 AF/HD 2nd 0 0 0 0 ∞ ∞ 1.376 −0.0650 0.130 −0.260 U−2µ−2V2−V3=0 0.715

boundary order ≈ 1
2
U 2V3+V4=0

C∗
2 AF/nHD 2nd −0.554 0 0.554 ∞ ∞ ∞ 1.376 −∞ ∞ −∞ U−2µ−2V2−V3→0 0.715

boundary order 2V3+V4→0

C∗
3 AF/τHb 2nd −∞ 0 ∞ −∞ ∞ ∞ ∞ −∞ ∞ −∞ t0+µ+1

4 J+V2≈−0.739 1.68

boundary order

C∗
4 hD/τHb 2nd −∞ 0 ∞ −∞ ∞ −∞ ∞ ∞ −∞ ∞ t0+µ+1

4 J+V2≈−5.178 1.42

boundary order 8µ+J+4V2≈6.617

C∗
5 portion of 2nd −1.610 0 −2 ln 3 −1.594 ∞ 0.523 0 0.0108 −0.569 −∞ 1.56

hD/nHD order ≈ −3U

boundary

C∗
6 hD/τtJ 2nd 2.959 0 −29.585 9.629 ∞ 1.016 −13.692 −8.332 −18.259 −∞ 1.01

boundary order

N∗ portion of null 0 0 −2 ln 3 0 ∞ 0 0 0 4 ln
√

3
2

−∞ 2

hD/nHD ≈ −3U

boundary

L∗ F ∗
1 , F ∗

2 , C∗
2 critical −0.554 0 0.554 ∞ ∞ −∞ 1.376 ∞ −∞ −∞ U−2µ−2V2−V3→0 3

basins meet endpoint 8µ+J+4V2≈−0.798 0.715

B∗
1 C∗

5 , N∗ multi- −1.236 0 −2 ln 3 −1.005 ∞ 0.221 0 0.127 −0.652 −∞ 1.73

basins meet critical ≈ −3U 0.22

B∗
2 C∗

2 , C∗
3 , C∗

4 , multi- −2.156 0 −1.555 −2.708 ∞ 1.559 0.321 −0.762 0.201 −∞ 1.15

C∗
5 basins meet critical ≈ −3U 0.27

B∗
3 F ∗

1 , N∗ multi- 0 0 −2 ln 3 0 ∞ −0.681 0 1.089 −0.438 −∞ 3U+V4≈3.044 2.56

basins meet critical ≈ −3U 0.96

B∗
4 F ∗

2 , C∗
3 , C∗

4 multi- −∞ 0 ∞ −∞ ∞ −∞ ∞ ∞ −∞ −∞ t0+µ+1
4 J+V2→0 2.68

basins meet critical 8µ+J+4V2→0 1.90

boundaries are respectively controlled by the second-order
fixed points C∗

1, C∗
2, C∗

3, and C∗
4. The latter three bound-

aries intersect at the multicritical point B2, controlled by
the fixed point B∗

2. A segment of the hD/nHD boundary
just above this intersection is second-order, controlled by
the fixed point C∗

5, ending at the multicritical point B1,
controlled by the fixed point B∗

1. The high-temperature
section of the hD/nHD boundary is a disorder line, con-

trolled by the null fixed point N*, i.e., there is no phase
transition above B1.

As U0/t is increased, the phase diagram topology be-
comes more complex. For U0/t � 6, the τtJ phase appears,
its boundary with hD controlled by the second-order fixed
point C∗

6. Portions of the lower-temperature boundary be-
tween the hD and nHD phases become first-order (fixed
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point F∗
1), and islands of AF appear above the τtJ phase;

their boundaries with hD are also first-order (fixed point
F∗

2). The intersections of these first-order boundaries with
other phase boundaries are controlled by the additional
multicritical points B∗

3 and B∗
4 , and by the critical end-

point L∗ [48].
As the coupling U0/t varies, a most interesting aspect

of the changing phase diagram topology is the relative
sizes of the τHb and τtJ phases. The τHb phase is largest
at intermediate values of U0/t, and gradually decreases in
size as we move into the strong-coupling regime, breaking
up into narrow slivers until at large values of U0/t only
tiny remnants of it are left in the phase diagram. The
τtJ phase appears at intermediate values of U0/t, grows in
size as U0/t is increased, and occupies a prominent place in
the diagram next to the AF phase in the strong-coupling
regime. As discussed in Section VII, this is precisely what
we expect, since the Hubbard phase diagram should ap-
proximately reproduce the tJ model results [16] in the
large U0/t limit.

Phase diagrams in terms of temperature versus elec-
tron density 〈ni〉 are shown in Figure 2. It is seen that the
antiferromagnetic phase is unstable to at most 15% hole
(or electron) doping at low temperatures. The τHb and τtJ
phases exist at different doping values, with τHb appear-
ing for approximately 10–18% doping, directly adjacent
to the AF phase, and τtJ in the 30–35% doping range.
The narrowness of the first-order transitions, with jumps
in the electron density of the order of a few percent, is
noteworthy.

6 Specific heat results

From the calculated expectation values of the operators
occurring in the Hamiltonian (Eq. (2)), we have obtained
the dimensionless internal energy per bond 〈βH(i, j)〉. Re-
call that dimensionless coupling constants are exhibited in
the Hubbard Hamiltonian of equations (2), e.g.,

t =
t̃

kBT
, (19)

where t̃ is a constant that does not depend on tempera-
ture. The specific heat is calculated with

C =
∂〈H(i, j)〉

∂T
= kB

{
∂

∂t−1

〈
c†iσcjσ + c†jσciσ

〉

+
U

t

∂

∂t−1
〈ni↑ni↓ + nj↑nj↓〉

}
. (20)

The partial derivatives are taken at fixed U0/t and at fixed
density 〈ni〉.

In Figure 5 we plot γ = C/T for U0/t = 15 at several
different electron densities. (The corresponding phase di-
agram is shown in Fig. 2b). At half-filling, 〈ni〉 = 1.00,
we observe a broad peak near the HD/AF transition tem-
perature, which we can attribute to the onset of spin or-
der. As we dope the system with holes, this peak gets

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Temperature 1êt

0

1

2

3

4

g

=

C

ê

T

0.60
0.68
0.73
0.84
0.93
1.00

Fig. 5. The specific heat coefficient γ = C/T as a function of
temperature for U0/t = 15, at several different electron den-
sities 〈ni〉 indicated in the legend. For low temperatures the
densities 〈ni〉 = 1.00 and 0.93 lie inside the antiferromagnetic
(AF) phase, 0.84 inside the τHb phase, 0.73 and 0.60 inside
the hole-rich disordered (hD) phase, and 0.68 inside the τtJ

phase. Here and in the following figures, γ is shown in units
of k2

B/t̃, where t̃ is the temperature-independent constant in
equation (19).

0.5 0.6 0.7 0.8 0.9 1.0
Electron density Xni\

0.0

0.1

0.2

0.3

0.4

0.5

g

=

C

ê

T

hD ttJ tHb AF

AF

hD nHD

Fig. 6. The specific heat coefficient γ = C/T for U0/t = 15 at
the low temperature of 1/t = 0.085, as a function of electron
density 〈ni〉. The corresponding phases are indicated near the
top of the figure, with second-order phase boundaries marked
by thin vertical lines. The interval between the vertical dashed
lines corresponds to the first-order phase transition.

sharper, becoming most pronounced near 〈ni〉 = 0.68, di-
rectly above the transition temperature between the hD
and τtJ phases. In fact, the C/T curve shows a multipeak
structure near the transition, a general characteristic of
the phase diagram region just above the τtJ phase. At
electron density 〈ni〉 = 0.60, no longer in the τtJ range,
the peak decreases in size and broadens out again.

The distinct nature of the τtJ and τHb phases becomes
clear when we look at the low temperature specific heat.
In Figure 6 we plot the coefficient γ = C/T as a function
of electron density for U0/t = 15 and at low temperature
1/t = 0.085. In the limit as T → 0, γ is a measure of the
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linear contribution to the specific heat due to quasiparticle
excitations. Near half-filling, γ is close to zero, increases to
a small level with sufficient hole doping, falls to near zero
again in the τHb phase, and dramatically increases only
after the system makes a narrow first-order transition to
the hole-rich disordered phase. The steady rise of γ in the
hD phase with further hole doping is consistent with a
Fermi liquid interpretation of this phase. The increase in
γ is interrupted by the τtJ interval, where the curve makes
a sharp oscillation, but continues in the hD region on the
other side.

We see that the τtJ phase has non-zero γ at low tem-
peratures, while the τHb phase does not. In Figures 7(a)
and (b) we contrast the two τ phases directly, compar-
ing representative C/T curves for τtJ and τHb transitions.
We observe that in the τHb phase the low-temperature
specific heat exhibits an exponential form characteristic
of a gap in the quasiparticle spectrum. Specific heat data
points for temperatures 1/t < 0.2, shown in the top right
inset of Figure 7b, were found to fit a theoretical curve of
the same form as in the T → 0 limit of a weakly-coupled
superconductor,

C

kB
=

A

T 3/2
exp

(
−∆
T

)
, (21)

with a best-fit coefficient A = 1.02 ± 0.06 and a zero-
temperature gap ∆ = 1.01 ± 0.01, where t−1 is used as
the temperature variable. The lack of Goldstone modes
here is due to the hierarchical connectivity of our lattice,
which is an approximate rendering of physical lattices. In
contrast, the τtJ phase clearly has a gapless spectrum,
as we see in the C/T curve of Figure 7a. As mentioned
earlier, we also clearly see multiple peaks in the specific
heat just above the hD/τtJ transition temperature.

The τtJ and τHb phases have similar properties at
the phase sink, most notably a non-zero hopping ampli-
tude, and thus are both good candidates for supercon-
ductivity. Since the two phases are dominant in different
U0/t regimes, their contrasting specific heat character-
istics can potentially be understood as the difference
between strongly-coupled and weakly-coupled supercon-
ducting phases. For the strongly-coupled, BEC-like case,
pairing occurs above Tc, and these tightly bound bosonic
pairs condense at the transition temperature. The double-
peak structure in the specific heat above the τtJ phase is
a possible indicator of such pair formation. Additionally,
we expect that a BEC-like superconducting transition in
three dimensions should have a specific heat critical ex-
ponent α = −1 [28]. Analysis of the C∗

6 fixed point, gov-
erning the hD/τtJ boundary, yields the result α = −0.97.
The presence of low-lying excitations in a Bose gas is also
consistent with the fact that we do not see a gap in the
low-temperature specific heat of the τtJ phase.

Turning now to the τHb phase, we already noted that
its specific heat can be closely fitted at low temperatures
to an exponential curve, which is exactly what we would
expect for a weakly-coupled superconducting phase. Anal-
ysis of the C∗

3 fixed point, controlling the AF/τHb bound-
ary, yields a specific heat coefficient α = −0.27. This

tHb AF nHD

HbL

0.3115 0.3200
1.1

1.2

0.0 0.1
0.0

0.2
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HaL ttJ hD nHD

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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5.0

g

=

C

ê

T

Fig. 7. The specific heat coefficient γ = C/T as a function of
temperature for two different electron densities and values of
U0/t: (a) 〈ni〉 = 0.68, U0/t = 20; (b) 〈ni〉 = 0.875, U0/t = 7.5.
Phases are indicated near the top of the figures, with second-
order phase boundaries marked by thin vertical lines. The in-
terval between the vertical dashed lines corresponds to a first-
order phase transition. In diagram (b) the top left inset shows
a close-up of the cusp in γ at the AF/τHb transition temper-
ature. The data points in the top right inset are calculated
γ values for temperatures 1/t < 0.2, fitted to an exponential
curve of the form C/kBT = A

T5/2 exp
(−∆

T

)
, with best-fit pa-

rameters A = 1.02 ± 0.06 and ∆ = 1.01 ± 0.01, where t−1 is
used as the temperature variable.

translates into a finite cusp at the transition temperature,
as shown in the top left inset of Figure 7b. For weak and
intermediate couplings the superconducting transition is
expected to belong to the universality class of the d = 3
XY model, with α = −0.013 [55] (examples of transi-
tions in this class include the superfluid transition of 4He,
the superconducting transition in certain high-Tc materi-
als like Y-123, and also in conventional superconductors,
though for the latter the critical region is too narrow to be
observed experimentally) [28]. Our calculated α is closer
to the d = 3 XY than to the BEC value, supporting the
weak-coupling interpretation of the τHb phase.

7 The tJ limit of the Hubbard model

In the strong-coupling limit U0 
 t, second-order per-
turbation theory in t/U0 applied to the Hubbard model
leads to the following Hamiltonian (known as the tJ
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Fig. 8. d = 3 Hubbard model phase diagram for large Coulomb
repulsion U0/t = 50 in temperature versus (a) chemical poten-
tial, (b) electron density 〈ni〉. The full curves are second-order
phase boundaries, while the dotted curves indicate first-order
boundaries. The dashed lines are not phase transitions, but dis-
order lines between the near-half-filled disordered and hole-rich
disordered phases.

model) [14–17,56–60],

HtJ = −t
∑

〈ij〉,σ
P

(
c†iσcjσ + c†jσciσ

)
P

+ J
∑

〈ij〉
P

(
�Si · �Sj − 1

4
ninj

)
P, (22)

where J = 4t2/U and P is a projection operator prohibit-
ing double occupation of a lattice site. In addition to the
terms shown above, the perturbation theory generates a
three-site term of the form

∑
〈ikj〉 c

†
iσ(Sk)σσ′cjσ′ , but this

term is usually ignored, from the assumption that it does
not radically alter the physics of the tJ model. (Our cur-
rent results, directly from the strong-coupling limit of the
actual Hubbard model, confirm this assumption.) We thus
expect that our Hubbard model approach in the limit of
large U0/t should give results qualitatively similar to those
found for the tJ model in earlier renormalization-group
studies [16,17]. The phases of the tJ model found in these
studies are identical to those of the Hubbard model, ex-
cept that there is no τHb phase.

Figure 8 shows the Hubbard model phase diagram in
terms of temperature versus chemical potential and tem-
perature versus electron density for U0/t = 50. At this

0.0 0.1 0.2 0.3 0.4
Temperature 1êt

0
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g
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C

ê
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ttJ nHDAFnHD
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AF
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Fig. 9. The specific heat coefficient γ = C/T as a function
of temperature for U0/t = 50 and 〈ni〉 = 0.67. Phases are
indicated near the top of the figure, with second-order phase
boundaries marked by thin vertical lines. The dashed lines are
not phase transitions, but disorder lines between the near-half-
filled disordered and hole-rich disordered phases.

large coupling, we do indeed observe a phase diagram
very similar to that found in the earlier study of the tJ
model [16,17]. In particular, the τtJ phase is surrounded
by AF islands, and directly above τtJ we get a lamellar
structure of alternating AF, nHD, and hD phases. The
AF phase near half-filling is unstable to only about 5%
hole doping. This phase diagram can be seen as an evo-
lution from the U0/t = 20 result of Figures 1a and 2a,
with the τHb entirely disappearing at U0/t = 50 except
for infinitesimal slivers. The multiple peaks in the specific
heat above the τtJ transition persist in the strong-coupling
limit, as seen in Figure 9, which plots the specific heat
coefficient γ for U/t0 = 50 at 〈ni〉 = 0.67. The peak struc-
ture here is more complex than in Figure 7a, due to the
above-mentioned lamellar phases.

We can also observe the evolution from the Hubbard
to the tJ limits through the expectation value of the ki-
netic energy per bond, 〈K〉 = −∑

σ

〈
c†iσcjσ + c†jσciσ

〉
,

which is proportional to the density of free carriers in the
system. Figure 10 shows 〈K〉 as a function of electron den-
sity for the temperature 1/t = 0.2, calculated at several
different couplings U0/t. As U0/t is increased, the value
of 〈K〉 at half-filling is reduced, and when U0/t = 1000
we are close to the tJ limit, with the kinetic energy at
half-filling almost zero, indicating no available free carriers
due to the prohibitively high energy of double occupation.
The U0/t = 1000 curve almost exactly overlaps the result
calculated from the tJ model renormalization-group equa-
tions at the same temperature using the corresponding
coupling J/t = 4t/U0 = 0.004.
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Appendix A: Determination of the γp in terms
of the matrix elements of the three-site
Hamiltonian

Equation (8) allows us to express the matrix elements γp ≡〈
φp|e−β′H′(i,k)|φp

〉
of the renormalized, exponentiated

two-site Hamiltonian in terms of matrix elements of the
unrenormalized, exponentiated three-site Hamiltonian, as
given below. The γp, in turn, determine the renormalized
interaction constants, in equation (10). In the equations
below, 〈ψq||ψq̄〉 denotes

〈
ψq|e−βH(i,j)−βH(j,k)|ψq̄

〉
:

γ1 =〈ψ1||ψ1〉+2〈ψ2||ψ2〉+〈ψ9||ψ9〉,

γ2 =〈ψ3||ψ3〉+ 1
2
〈ψ8||ψ8〉+ 3

2
〈ψ15||ψ15〉+〈ψ24||ψ24〉,

γ4 =〈ψ6||ψ6〉+ 1
2
〈ψ11||ψ11〉+ 3

2
〈ψ20||ψ20〉+〈ψ32||ψ32〉,

γ6 =〈ψ10||ψ10〉+2〈ψ26||ψ26〉+〈ψ44||ψ44〉,
γ7 =〈ψ13||ψ13〉+〈ψ34||ψ34〉+〈ψ38||ψ38〉+〈ψ48||ψ48〉,

γ8 =〈ψ12||ψ12〉+2〈ψ31||ψ31〉+〈ψ47||ψ47〉,

γ9 =〈ψ14||ψ14〉+ 2
3
〈ψ23||ψ23〉+ 4

3
〈ψ39||ψ39〉+〈ψ49||ψ49〉,

γ12 =〈ψ25||ψ25〉+ 1
2
〈ψ45||ψ45〉+ 3

2
〈ψ50||ψ50〉+〈ψ59||ψ59〉,

γ14 =〈ψ33||ψ33〉+ 1
2
〈ψ46||ψ46〉+ 3

2
〈ψ55||ψ55〉+〈ψ62||ψ62〉,

γ16 =〈ψ43||ψ43〉+2〈ψ58||ψ58〉+〈ψ64||ψ64〉,

γ0 ≡
〈
φ6|e−β′H′(i,k)|φ8

〉

=〈ψ10||ψ12〉+2〈ψ26||ψ31〉+〈ψ44||ψ47〉.
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